Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 344: 123307, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38190877

RESUMO

Soot is a prevalent aerosol found both indoors and outdoors that has several sources, such as natural (e.g., wildfires), civilian (e.g., cooking), or military (e.g., burn pit operation). Additionally, within the sources, factors that influence the physicochemical properties of the soot include combustion temperature, oxygen availability, and fuel type. Being able to reproduce soot in the laboratory and systematically assess its toxicity is important in the pursuit of elucidating pathologies associated with its exposure. Of the organs of interest, we targeted the eye given the scant attention received. Yet, air pollution constituents such as soot have been linked to diseases such as age-related macular degeneration and proliferative vitreoretinopathy. We developed a bench-scale system to synthesize different types of soot, that is, soot with a systematically varied physical attributes or chemical composition. We used common analytical techniques to probe such properties, and used statistical analyses to correlate them with toxicity in vitro using ARPE-19 cells. Within the range of flame conditions studied, we find that soot toxicity increases with increasing oxygen concentration in fuel-rich premixed flames, and weakly increases with decreasing flame temperature. Additionally, soot particles produced in premixed flames are generally smaller in size, exhibit a lesser fractal structure, and are considerably more toxic to ARPE-19 cells than soot particles produced in non-premixed flames.


Assuntos
Oxigênio , Fuligem , Fuligem/análise , Oxigênio/análise , Temperatura
2.
Environ Sci Technol ; 55(5): 2869-2877, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33587619

RESUMO

Atomic chlorine (Cl•) affects air quality and atmospheric oxidizing capacity. Nitryl chloride (ClNO2) - a common Cl• source-forms when chloride-containing aerosols react with dinitrogen pentoxide (N2O5). A recent study showed that saline lakebed (playa) dust is an inland source of particulate chloride (Cl-) that generates high ClNO2. However, the underlying physiochemical factors responsible for observed yields are poorly understood. To elucidate these controlling factors, we utilized single particle and bulk techniques to determine the chemical composition and mineralogy of playa sediment and dust samples from the southwest United States. Single particle analysis shows trace highly hygroscopic magnesium and calcium Cl-containing minerals are present and likely facilitate ClNO2 formation at low humidity. Single particle and mineralogical analysis detected playa sediment organic matter that hinders N2O5 uptake as well as 10 Å-clay minerals (e.g., Illite) that compete with water and chloride for N2O5. Finally, we show that the composition of the aerosol surface, rather than the bulk, is critical in ClNO2 formation. These findings underscore the importance of mixing state, competing reactions, and surface chemistry on N2O5 uptake and ClNO2 yield for playa dusts and, likely, other aerosol systems. Therefore, consideration of particle surface composition is necessary to improve ClNO2 and air quality modeling.


Assuntos
Poluição do Ar , Poeira , Aerossóis , Cloro , Carvão Mineral
3.
Environ Sci Technol ; 53(13): 7442-7452, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31117541

RESUMO

Nitryl chloride (ClNO2), formed when dinitrogen pentoxide (N2O5) reacts with chloride-containing aerosol, photolyzes to produce chlorine radicals that facilitate the formation of tropospheric ozone. ClNO2 has been measured in continental areas; however, the sources of particulate chloride required to form ClNO2 in inland regions remain unclear. Dust emitted from saline playas (e.g., dried lakebeds) contains salts that can potentially form ClNO2 in inland regions. Here, we present the first laboratory measurements demonstrating the production of ClNO2 from playa dusts. N2O5 reactive uptake coefficients (γN2O5) ranged from ∼10-3 to 10-1 and ClNO2 yields (φClNO2) were >50% for all playas tested except one. In general, as the soluble ion fraction of playa dusts increases, γN2O5 decreases and φClNO2 increases. We attribute this finding to a transition from aerosol surfaces dominated by silicates that react efficiently with N2O5 and produce little ClNO2 to aerosols that behave like deliquesced chloride-containing salts that generate high yields of ClNO2. Molecular bromine (Br2) and nitryl bromide (BrNO2) were also detected, highlighting that playas facilitate the heterogeneous production of brominated compounds. Our results suggest that parameterizations and models should be updated to include playas as an inland source of aerosol chloride capable of efficiently generating ClNO2.


Assuntos
Poeira , Ozônio , Aerossóis , Cloretos , Cloro
4.
Environ Res ; 158: 33-42, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28599193

RESUMO

Residential solid fuel combustion in cookstoves has established health impacts including bladder and lung cancers, cataracts, low birth weight, and pneumonia. The chemical composition of particulate matter (PM) from 4 commonly-used solid fuels (coal, dung, ambient/dry applewood, and oakwood pellets), emitted from a gasifier cookstove, as well as propane, were examined. Temporal changes between the different cookstove burn-phases were also explored. Normalized concentrations of non-refractory PM1, total organics, chloride, ammonium, nitrate, sulfate, and 41 particle-phase polycyclic aromatic hydrocarbons (PAHs) were measured using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and a Thermal desorption Aerosol Gas chromatograph (TAG), respectively. Coal demonstrated the highest fraction of organic matter in its particulate emission composition (98%), followed by dung (94%). Coal and dung also demonstrated the highest numbers and concentrations of PAHs. While dry applewood emitted ten times lower organic matter compared to ambient applewood, a higher fraction of these organics was composed of PAHs, especially the more toxic ones such as benzo(a)pyrene (9.63ng/L versus 0.04ng/L), and benzo(b)fluoranthene (31.32ng/L versus 0.19ng/L). Data from the AMS demonstrated no clear trends for any of the combustion fuels over the different combustion phases unlike the previously reported trends observed for the physical characteristics. Of the solid fuels, pellets demonstrated the lowest emissions. Emissions from propane were below the quantification limit of the instruments. This work highlights the benefits of incorporating additional metrics into the cookstove evaluation process, thus enriching the existing PM data inventory.


Assuntos
Poluentes Atmosféricos/química , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Compostos Inorgânicos/análise , Compostos Orgânicos/análise , Material Particulado/química , Poluentes Atmosféricos/análise , Carvão Mineral , Culinária , Fezes , Material Particulado/análise , Madeira
5.
Environ Sci Technol ; 50(8): 4335-42, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27010702

RESUMO

Isoprene is the predominant non-methane volatile organic compound emitted to the atmosphere and shapes tropospheric composition and biogeochemistry through its effects on ozone, other oxidants, aerosols, and the nitrogen cycle. Isoprene is emitted naturally by vegetation during daytime, when its photo-oxidation is rapid, and in the presence of nitrogen oxides (NOx) produces ozone and degrades air quality in polluted regions. Here, we show for a city downwind of an isoprene-emitting forest (St. Louis, MO) that isoprene actually peaks at night; ambient levels then endure, owing to low nighttime OH radical concentrations. Nocturnal chemistry controls the fate of that isoprene and the likelihood of a high-ozone episode the following day. When nitrate (NO3) radicals are suppressed, high isoprene persists through the night, providing photochemical fuel upon daybreak and leading to a dramatic late-morning ozone peak. On nights with significant NO3, isoprene is removed before dawn; days with low morning isoprene then have lower ozone with a more typical afternoon peak. This biogenic-anthropogenic coupling expands the daily high-ozone window and likely has an opposite O3-NOx response to what would otherwise be expected, with implications for exposure and air-quality management in cities that, like St. Louis, are downwind of major isoprene-emitting forests.


Assuntos
Poluentes Atmosféricos/química , Ar , Butadienos/química , Florestas , Hemiterpenos/química , Ozônio/química , Pentanos/química , Aerossóis/química , Poluentes Atmosféricos/análise , Atmosfera/química , Butadienos/análise , Cidades , Hemiterpenos/análise , Illinois , Nitratos/química , Óxidos de Nitrogênio/análise , Ozônio/análise , Pentanos/análise , Compostos Orgânicos Voláteis , Vento
6.
Environ Sci Technol ; 44(16): 6174-82, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20704215

RESUMO

Glyoxal (G) and methylglyoxal (MG) are potentially important secondary organic aerosol (SOA) precursors. Previous studies of SOA formation by G and MG have focused on either species separately; however, G and MG typically coexist in the atmosphere. We studied the formation of secondary organic material in aqueous aerosol mimic mixtures containing G and MG with ammonium sulfate. We characterized the formation of light-absorbing products using UV-vis spectrophotometry. We found that absorption at 280 nm can be described well using models for the formation of light-absorbing products by G and MG in parallel. Pendant drop tensiometry measurements showed that surface tension depression by G and MG in these solutions can be modeled as a linear combination of the effects of G and MG alone. Product species were identified using chemical ionization mass spectrometry with a volatilization flow tube inlet (Aerosol CIMS). Peaks consistent with G-MG cross-reaction products were observed, accounting for a significant fraction of detected product mass, but most peaks could be attributed to self-reaction. We conclude that cross-reactions contribute to SOA mass from uptake of G and MG, but they are not required to accurately model the effects of this process on aerosol surface tension or light absorption.


Assuntos
Aerossóis/química , Aldeído Pirúvico/química , Absorção , Cinética , Luz , Espectrometria de Massas , Espectrofotometria Ultravioleta , Tensão Superficial , Fatores de Tempo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...